Source code for lsst.sims.maf.plots.specialPlotters

from builtins import zip
import numpy as np
import healpy as hp
import matplotlib.pyplot as plt

import lsst.sims.maf.metrics as metrics

from .plotHandler import BasePlotter

__all__ = ['FOPlot', 'SummaryHistogram']

[docs]class FOPlot(BasePlotter): """ Special plotter to generate and label fO plots. """ def __init__(self): self.plotType = 'FO' self.objectPlotter = False self.defaultPlotDict = {'title': None, 'xlabel': 'Number of visits', 'ylabel': 'Area (1000s of square degrees)', 'scale': None, 'Asky': 18000., 'Nvisits': 825, 'xMin': None, 'xMax': None, 'yMin': None, 'yMax': None, 'linewidth': 2, 'reflinewidth': 2}
[docs] def __call__(self, metricValue, slicer, userPlotDict, fignum=None): """ Parameters ---------- metricValue : numpy.ma.MaskedArray The metric values calculated with the 'Count' metric and a healpix slicer. slicer : lsst.sims.maf.slicers.HealpixSlicer userPlotDict: dict Dictionary of plot parameters set by user (overrides default values). Note that Asky and Nvisits values set here and in the slicer should be consistent, for plot labels and summary statistic values to be consistent. fignum : int Matplotlib figure number to use (default = None, starts new figure). Returns ------- int Matplotlib figure number used to create the plot. """ if not hasattr(slicer, 'nside'): raise ValueError('FOPlot to be used with healpix or healpix derived slicers.') fig = plt.figure(fignum) plotDict = {} plotDict.update(self.defaultPlotDict) plotDict.update(userPlotDict) if plotDict['scale'] is None: plotDict['scale'] = (hp.nside2pixarea(slicer.nside, degrees=True) / 1000.0) # Expect metricValue to be something like number of visits cumulativeArea = np.arange(1, metricValue.compressed().size + 1)[::-1] * plotDict['scale'] plt.plot(np.sort(metricValue.compressed()), cumulativeArea, 'k-', linewidth=plotDict['linewidth'], zorder=0) # This is breaking the rules and calculating the summary stats in two places. # Could just calculate summary stats and pass in labels. rarr = np.array(list(zip(metricValue.compressed())), dtype=[('fO', metricValue.dtype)]) fOArea = metrics.fOArea(col='fO', Asky=plotDict['Asky'], norm=False, nside=slicer.nside).run(rarr) fONv = metrics.fONv(col='fO', Nvisit=plotDict['Nvisits'], norm=False, nside=slicer.nside).run(rarr) plt.axvline(x=plotDict['Nvisits'], linewidth=plotDict['reflinewidth'], color='b') plt.axhline(y=plotDict['Asky'] / 1000., linewidth=plotDict['reflinewidth'], color='r') Nvis_median = fONv['value'][np.where(fONv['name'] == 'MedianNvis')] plt.axhline(y=Nvis_median / 1000., linewidth=plotDict['reflinewidth'], color='b', alpha=.5, label=r'f$_0$ Median Nvisits=%.3g' % Nvis_median) plt.axvline(x=fOArea, linewidth=plotDict['reflinewidth'], color='r', alpha=.5, label='f$_0$ Area=%.3g' % fOArea) plt.legend(loc='lower left', fontsize='small', numpoints=1) plt.xlabel(plotDict['xlabel']) plt.ylabel(plotDict['ylabel']) plt.title(plotDict['title']) xMin = plotDict['xMin'] xMax = plotDict['xMax'] yMin = plotDict['yMin'] yMax = plotDict['yMax'] if (xMin is not None) or (xMax is not None): plt.xlim([xMin, xMax]) if (yMin is not None) or (yMax is not None): plt.ylim([yMin, yMax]) return fig.number
[docs]class SummaryHistogram(BasePlotter): """ Special plotter to summarize metrics which return a set of values at each slicepoint, such as if a histogram was calculated at each slicepoint (e.g. with the lsst.sims.maf.metrics.TgapsMetric). Effectively marginalizes the calculated values over the sky, and plots the a summarized version (reduced to a single according to the plotDict['metricReduce'] metric). """ def __init__(self): self.plotType = 'SummaryHistogram' self.objectPlotter = True self.defaultPlotDict = {'title': None, 'xlabel': None, 'ylabel': 'Count', 'label': None, 'cumulative': False, 'xMin': None, 'xMax': None, 'yMin': None, 'yMax': None, 'color': 'b', 'linestyle': '-', 'histStyle': True, 'grid': True, 'metricReduce': metrics.SumMetric(), 'bins': None}
[docs] def __call__(self, metricValue, slicer, userPlotDict, fignum=None): """ Parameters ---------- metricValue : numpy.ma.MaskedArray Handles 'object' datatypes for the masked array. slicer : lsst.sims.maf.slicers Any MAF slicer. userPlotDict: dict Dictionary of plot parameters set by user (overrides default values). 'metricReduce' (an lsst.sims.maf.metric) indicates how to marginalize the metric values calculated at each point to a single series of values over the sky. 'histStyle' (True/False) indicates whether to plot the results as a step histogram (True) or as a series of values (False) 'bins' (np.ndarray) sets the x values for the resulting plot and should generally match the bins used with the metric. fignum : int Matplotlib figure number to use (default = None, starts new figure). Returns ------- int Matplotlib figure number used to create the plot. """ fig = plt.figure(fignum) plotDict = {} plotDict.update(self.defaultPlotDict) plotDict.update(userPlotDict) # Combine the metric values across all slicePoints. if not isinstance(plotDict['metricReduce'], metrics.BaseMetric): raise ValueError('Expected plotDict[metricReduce] to be a MAF metric object.') # Get the data type dt = metricValue.compressed()[0].dtype # Change an array of arrays (dtype=object) to a 2-d array of correct dtype mV = np.array(metricValue.compressed().tolist(), dtype=[('metricValue', dt)]) # Make an array to hold the combined result finalHist = np.zeros(mV.shape[1], dtype=float) metric = plotDict['metricReduce'] metric.colname = 'metricValue' # Loop over each bin and use the selected metric to combine the results for i in np.arange(finalHist.size): finalHist[i] = metric.run(mV[:, i]) bins = plotDict['bins'] if plotDict['histStyle']: width = np.diff(bins) leftedge = bins[:-1] - width/2.0 rightedge = bins[:-1] + width/2.0 #x = np.ravel(list(zip(bins[:-1], bins[1:]))) x = np.ravel(list(zip(leftedge, rightedge))) y = np.ravel(list(zip(finalHist, finalHist))) else: # Could use this to plot things like FFT x = bins[:-1] y = finalHist # Make the plot. plt.plot(x, y, linestyle=plotDict['linestyle'], label=plotDict['label'], color=plotDict['color']) # Add labels. plt.xlabel(plotDict['xlabel']) plt.ylabel(plotDict['ylabel']) plt.title(plotDict['title']) plt.grid(plotDict['grid'], alpha=0.3) # Set y and x limits, if provided. if plotDict['xMin'] is not None: plt.xlim(xmin=plotDict['xMin']) elif bins[0] == 0: plt.xlim(xmin=0) if plotDict['xMax'] is not None: plt.xlim(xmax=plotDict['xMax']) if plotDict['yMin'] is not None: plt.ylim(ymin=plotDict['yMin']) elif finalHist.min() == 0: plotDict['yMin'] = 0 if plotDict['yMax'] is not None: plt.ylim(ymax=plotDict['yMax']) return fig.number