Source code for lsst.sims.maf.plots.plotHandler

from builtins import zip
from builtins import range
from builtins import object
import os
import numpy as np
import warnings
import matplotlib.pyplot as plt
import lsst.sims.maf.utils as utils

__all__ = ['applyZPNorm', 'PlotHandler', 'BasePlotter']

[docs]def applyZPNorm(metricValue, plotDict): if 'zp' in plotDict: if plotDict['zp'] is not None: metricValue = metricValue - plotDict['zp'] if 'normVal' in plotDict: if plotDict['normVal'] is not None: metricValue = metricValue / plotDict['normVal'] return metricValue
[docs]class BasePlotter(object): """ Serve as the base type for MAF plotters and example of API. """ def __init__(self): self.plotType = None # This should be included in every subsequent defaultPlotDict (assumed to be present). self.defaultPlotDict = {'title': None, 'xlabel': None, 'label': None, 'labelsize': None, 'fontsize': None, 'figsize': None} def __call__(self, metricValue, slicer, userPlotDict, fignum=None): pass
[docs]class PlotHandler(object): def __init__(self, outDir='.', resultsDb=None, savefig=True, figformat='pdf', dpi=600, thumbnail=True): self.outDir = outDir self.resultsDb = resultsDb self.savefig = savefig self.figformat = figformat self.dpi = dpi self.thumbnail = thumbnail self.filtercolors = {'u': 'cyan', 'g': 'g', 'r': 'y', 'i': 'r', 'z': 'm', 'y': 'k', ' ': None} self.filterorder = {' ': -1, 'u': 0, 'g': 1, 'r': 2, 'i': 3, 'z': 4, 'y': 5}
[docs] def setMetricBundles(self, mBundles): """ Set the metric bundle or bundles (list or dictionary). Reuse the PlotHandler by resetting this reference. The metric bundles have to have the same slicer. """ self.mBundles = [] # Try to add the metricBundles in filter order. if isinstance(mBundles, dict): for mB in mBundles.values(): vals = mB.fileRoot.split('_') forder = [self.filterorder.get(f, None) for f in vals if len(f) == 1] forder = [o for o in forder if o is not None] if len(forder) == 0: forder = len(self.mBundles) else: forder = forder[-1] self.mBundles.insert(forder, mB) self.slicer = self.mBundles[0].slicer else: for mB in mBundles: vals = mB.fileRoot.split('_') forder = [self.filterorder.get(f, None) for f in vals if len(f) == 1] forder = [o for o in forder if o is not None] if len(forder) == 0: forder = len(self.mBundles) else: forder = forder[-1] self.mBundles.insert(forder, mB) self.slicer = self.mBundles[0].slicer for mB in self.mBundles: if mB.slicer.slicerName != self.slicer.slicerName: raise ValueError('MetricBundle items must have the same type of slicer') self._combineMetricNames() self._combineRunNames() self._combineMetadata() self._combineConstraints() self.setPlotDicts(reset=True)
[docs] def setPlotDicts(self, plotDicts=None, plotFunc=None, reset=False): """ Set or update (or 'reset') the plotDict for the (possibly joint) plots. Resolution is: auto-generated items (colors/labels/titles) < anything previously set in the plotHandler < defaults set by the plotter < explicitly set items in the metricBundle plotDict < explicitly set items in the plotDicts list passed to this method. """ if reset: # Have to explicitly set each dictionary to a (separate) blank dictionary. self.plotDicts = [{} for b in self.mBundles] if isinstance(plotDicts, dict): # We were passed a single dictionary, not a list. plotDicts = [plotDicts] * len(self.mBundles) autoLabelList = self._buildLegendLabels() autoColorList = self._buildColors() autoCbar = self._buildCbarFormat() autoTitle = self._buildTitle() if plotFunc is not None: autoXlabel, autoYlabel = self._buildXYlabels(plotFunc) # Loop through each bundle and generate a plotDict for it. for i, bundle in enumerate(self.mBundles): # First use the auto-generated values. tmpPlotDict = {} tmpPlotDict['title'] = autoTitle tmpPlotDict['label'] = autoLabelList[i] tmpPlotDict['color'] = autoColorList[i] tmpPlotDict['cbarFormat'] = autoCbar # Then update that with anything previously set in the plotHandler. tmpPlotDict.update(self.plotDicts[i]) # Then override with plotDict items set explicitly based on the plot type. if plotFunc is not None: tmpPlotDict['xlabel'] = autoXlabel tmpPlotDict['ylabel'] = autoYlabel # Replace auto-generated plot dict items with things # set by the plotterDefaults, if they are not None. plotterDefaults = plotFunc.defaultPlotDict for k, v in plotterDefaults.items(): if v is not None: tmpPlotDict[k] = v # Then add/override based on the bundle plotDict parameters if they are set. tmpPlotDict.update(bundle.plotDict) # Finally, override with anything set explicitly by the user right now. if plotDicts is not None: tmpPlotDict.update(plotDicts[i]) # And save this new dictionary back in the class. self.plotDicts[i] = tmpPlotDict # Check that the plotDicts do not conflict. self._checkPlotDicts()
def _combineMetricNames(self): """ Combine metric names. """ # Find the unique metric names. self.metricNames = set() for mB in self.mBundles: self.metricNames.add(mB.metric.name) # Find a pleasing combination of the metric names. order = ['u', 'g', 'r', 'i', 'z', 'y'] if len(self.metricNames) == 1: jointName = ' '.join(self.metricNames) else: # Split each unique name into a list to see if we can merge the names. nameLengths = [len(x.split()) for x in self.metricNames] nameLists = [x.split() for x in self.metricNames] # If the metric names are all the same length, see if we can combine any parts. if len(set(nameLengths)) == 1: jointName = [] for i in range(nameLengths[0]): tmp = set([x[i] for x in nameLists]) # Try to catch special case of filters and put them in order. if tmp.intersection(order) == tmp: filterlist = '' for f in order: if f in tmp: filterlist += f jointName.append(filterlist) else: # Otherwise, just join and put into jointName. jointName.append(''.join(tmp)) jointName = ' '.join(jointName) # If the metric names are not the same length, just join everything. else: jointName = ' '.join(self.metricNames) self.jointMetricNames = jointName def _combineRunNames(self): """ Combine runNames. """ self.runNames = set() for mB in self.mBundles: self.runNames.add(mB.runName) self.jointRunNames = ' '.join(self.runNames) def _combineMetadata(self): """ Combine metadata. """ metadata = set() for mB in self.mBundles: metadata.add(mB.metadata) self.metadata = metadata # Find a pleasing combination of the metadata. if len(metadata) == 1: self.jointMetadata = ' '.join(metadata) else: order = ['u', 'g', 'r', 'i', 'z', 'y'] # See if there are any subcomponents we can combine, # splitting on some values we expect to separate metadata clauses. splitmetas = [] for m in self.metadata: # Try to split metadata into separate phrases (filter / proposal / constraint..). if ' and ' in m: m = m.split(' and ') elif ', ' in m: m = m.split(', ') else: m = [m, ] # Strip white spaces from individual elements. m = set([im.strip() for im in m]) splitmetas.append(m) # Look for common elements and separate from the general metadata. common = set.intersection(*splitmetas) diff = [x.difference(common) for x in splitmetas] # Now look within the 'diff' elements and see if there are any common words to split off. diffsplit = [] for d in diff: if len(d) > 0: m = set([x.split() for x in d][0]) else: m = set() diffsplit.append(m) diffcommon = set.intersection(*diffsplit) diffdiff = [x.difference(diffcommon) for x in diffsplit] # If the length of any of the 'differences' is 0, then we should stop and not try to subdivide. lengths = [len(x) for x in diffdiff] if min(lengths) == 0: # Sort them in order of length (so it goes 'g', 'g dithered', etc.) tmp = [] for d in diff: tmp.append(list(d)[0]) diff = tmp xlengths = [len(x) for x in diff] idx = np.argsort(xlengths) diffdiff = [diff[i] for i in idx] diffcommon = [] else: # diffdiff is the part where we might expect our filter values to appear; # try to put this in order. diffdiffOrdered = [] diffdiffEnd = [] for f in order: for d in diffdiff: if len(d) == 1: if list(d)[0] == f: diffdiffOrdered.append(d) for d in diffdiff: if d not in diffdiffOrdered: diffdiffEnd.append(d) diffdiff = diffdiffOrdered + diffdiffEnd diffdiff = [' '.join(c) for c in diffdiff] # And put it all back together. combo = (', '.join([''.join(c) for c in diffdiff]) + ' ' + ' '.join([''.join(d) for d in diffcommon]) + ' ' + ' '.join([''.join(e) for e in common])) self.jointMetadata = combo def _combineConstraints(self): """ Combine the constraints. """ constraints = set() for mB in self.mBundles: if mB.constraint is not None: constraints.add(mB.constraint) self.constraints = '; '.join(constraints) def _buildTitle(self): """ Build a plot title from the metric names, runNames and metadata. """ # Create a plot title from the unique parts of the metric/runName/metadata. plotTitle = '' if len(self.runNames) == 1: plotTitle += list(self.runNames)[0] if len(self.metadata) == 1: plotTitle += ' ' + list(self.metadata)[0] if len(self.metricNames) == 1: plotTitle += ': ' + list(self.metricNames)[0] if plotTitle == '': # If there were more than one of everything above, use joint metadata and metricNames. plotTitle = self.jointMetadata + ' ' + self.jointMetricNames return plotTitle def _buildXYlabels(self, plotFunc): """ Build a plot x and y label. """ if plotFunc.plotType == 'BinnedData': if len(self.mBundles) == 1: mB = self.mBundles[0] xlabel = mB.slicer.sliceColName + ' (' + mB.slicer.sliceColUnits + ')' ylabel = mB.metric.name + ' (' + mB.metric.units + ')' else: xlabel = set() for mB in self.mBundles: xlabel.add(mB.slicer.sliceColName) xlabel = ', '.join(xlabel) ylabel = self.jointMetricNames elif plotFunc.plotType == 'MetricVsH': if len(self.mBundles) == 1: mB = self.mBundles[0] ylabel = mB.metric.name + ' (' + mB.metric.units + ')' else: ylabel = self.jointMetricNames xlabel = 'H (mag)' else: if len(self.mBundles) == 1: mB = self.mBundles[0] xlabel = mB.metric.name if mB.metric.units is not None: if len(mB.metric.units) > 0: xlabel += ' (' + mB.metric.units + ')' ylabel = None else: xlabel = self.jointMetricNames ylabel = set() for mB in self.mBundles: if 'ylabel' in mB.plotDict: ylabel.add(mB.plotDict['ylabel']) if len(ylabel) == 1: ylabel = list(ylabel)[0] else: ylabel = None return xlabel, ylabel def _buildLegendLabels(self): """ Build a set of legend labels, using parts of the runName/metadata/metricNames that change. """ if len(self.mBundles) == 1: return [None] labels = [] for mB in self.mBundles: if 'label' in mB.plotDict: label = mB.plotDict['label'] else: label = '' if len(self.runNames) > 1: label += mB.runName if len(self.metadata) > 1: label += ' ' + mB.metadata if len(self.metricNames) > 1: label += ' ' + mB.metric.name labels.append(label) return labels def _buildColors(self): """ Try to set an appropriate range of colors for the metric Bundles. """ if len(self.mBundles) == 1: if 'color' in self.mBundles[0].plotDict: return [self.mBundles[0].plotDict['color']] else: return ['b'] colors = [] for mB in self.mBundles: color = 'b' if 'color' in mB.plotDict: color = mB.plotDict['color'] else: if mB.constraint is not None: # If the filter is part of the sql constraint, we'll # try to use that first. if 'filter' in mB.constraint: vals = mB.constraint.split('"') for v in vals: if len(v) == 1: # Guess that this is the filter value if v in self.filtercolors: color = self.filtercolors[v] colors.append(color) # If we happened to end up with the same color throughout # (say, the metrics were all in the same filter) # then go ahead and generate random colors. if (len(self.mBundles) > 1) and (len(np.unique(colors)) == 1): colors = [np.random.rand(3,) for mB in self.mBundles] return colors def _buildCbarFormat(self): """ Set the color bar format. """ cbarFormat = None if len(self.mBundles) == 1: if self.mBundles[0].metric.metricDtype == 'int': cbarFormat = '%d' else: metricDtypes = set() for mB in self.mBundles: metricDtypes.add(mB.metric.metricDtype) if len(metricDtypes) == 1: if list(metricDtypes)[0] == 'int': cbarFormat = '%d' return cbarFormat def _buildFileRoot(self, outfileSuffix=None): """ Build a root filename for plot outputs. If there is only one metricBundle, this is equal to the metricBundle fileRoot + outfileSuffix. For multiple metricBundles, this is created from the runNames, metadata and metric names. If you do not wish to use the automatic filenames, then you could set 'savefig' to False and save the file manually to disk, using the plot figure numbers returned by 'plot'. """ if len(self.mBundles) == 1: outfile = self.mBundles[0].fileRoot else: outfile = '_'.join([self.jointRunNames, self.jointMetricNames, self.jointMetadata]) outfile += '_' + self.mBundles[0].slicer.slicerName[:4].upper() if outfileSuffix is not None: outfile += '_' + outfileSuffix outfile = utils.nameSanitize(outfile) return outfile def _buildDisplayDict(self): """ Generate a display dictionary. This is most useful for when there are many metricBundles being combined into a single plot. """ if len(self.mBundles) == 1: return self.mBundles[0].displayDict else: displayDict = {} group = set() subgroup = set() order = 0 for mB in self.mBundles: group.add(mB.displayDict['group']) subgroup.add(mB.displayDict['subgroup']) if order < mB.displayDict['order']: order = mB.displayDict['order'] + 1 displayDict['order'] = order if len(group) > 1: displayDict['group'] = 'Comparisons' else: displayDict['group'] = list(group)[0] if len(subgroup) > 1: displayDict['subgroup'] = 'Comparisons' else: displayDict['subgroup'] = list(subgroup)[0] displayDict['caption'] = ('%s metric(s) calculated on a %s grid, ' 'for opsim runs %s, for metadata values of %s.' % (self.jointMetricNames, self.mBundles[0].slicer.slicerName, self.jointRunNames, self.jointMetadata)) return displayDict def _checkPlotDicts(self): """ Check to make sure there are no conflicts in the plotDicts that are being used in the same subplot. """ # Check that the length is OK if len(self.plotDicts) != len(self.mBundles): raise ValueError('plotDicts (%i) must be same length as mBundles (%i)' % (len(self.plotDicts), len(self.mBundles))) # These are the keys that need to match (or be None) keys2Check = ['xlim', 'ylim', 'colorMin', 'colorMax', 'title'] # Identify how many subplots there are. If there are more than one, just don't change anything. # This assumes that if there are more than one, the plotDicts are actually all compatible. subplots = set() for pd in self.plotDicts: if 'subplot' in pd: subplots.add(pd['subplot']) # Now check subplots are consistent. if len(subplots) <= 1: reset_keys = [] for key in keys2Check: values = [pd[key] for pd in self.plotDicts if key in pd] if len(np.unique(values)) > 1: # We will reset some of the keys to the default, but for some we should do better. if key.endswith('Max'): for pd in self.plotDicts: pd[key] = np.max(values) elif key.endswith('Min'): for pd in self.plotDicts: pd[key] = np.min(values) elif key == 'title': title = self._buildTitle() for pd in self.plotDicts: pd['title'] = title else: warnings.warn('Found more than one value to be set for "%s" in the plotDicts.' % (key) + ' Will reset to default value. (found values %s)' % values) reset_keys.append(key) # Reset the most of the keys to defaults; this can generally be done safely. for key in reset_keys: for pd in self.plotDicts: pd[key] = None
[docs] def plot(self, plotFunc, plotDicts=None, displayDict=None, outfileSuffix=None): """ Create plot for mBundles, using plotFunc. plotDicts: List of plotDicts if one wants to use a _new_ plotDict per MetricBundle. """ if not plotFunc.objectPlotter: # Check that metricValues type and plotter are compatible (most are float/float, but # some plotters expect object data .. and some only do sometimes). for mB in self.mBundles: if mB.metric.metricDtype == 'object': metricIsColor = mB.plotDict.get('metricIsColor', False) if not metricIsColor: warnings.warn('Cannot plot object metric values with this plotter.') return # Update x/y labels using plotType. self.setPlotDicts(plotDicts=plotDicts, plotFunc=plotFunc, reset=False) # Set outfile name. outfile = self._buildFileRoot(outfileSuffix) plotType = plotFunc.plotType if len(self.mBundles) > 1: plotType = 'Combo' + plotType # Make plot. fignum = None plotlims = {'x': [None, None], 'y': [None, None]} for mB, plotDict in zip(self.mBundles, self.plotDicts): if mB.metricValues is None: # Skip this metricBundle. msg = 'MetricBundle (%s) has no attribute "metricValues".' % (mB.fileRoot) msg += ' Either the values have not been calculated or they have been deleted.' warnings.warn(msg) else: fignum = plotFunc(mB.metricValues, mB.slicer, plotDict, fignum=fignum) # Add a legend if more than one metricValue is being plotted or if legendloc is specified. legendloc = None if 'legendloc' in self.plotDicts[0]: legendloc = self.plotDicts[0]['legendloc'] if len(self.mBundles) > 1: try: legendloc = self.plotDicts[0]['legendloc'] except KeyError: legendloc = 'upper right' if legendloc is not None: plt.figure(fignum) plt.legend(loc=legendloc, fancybox=True, fontsize='smaller') # Add the super title if provided. if 'suptitle' in self.plotDicts[0]: plt.suptitle(self.plotDicts[0]['suptitle']) # Save to disk and file info to resultsDb if desired. if self.savefig: if displayDict is None: displayDict = self._buildDisplayDict() self.saveFig(fignum, outfile, plotType, self.jointMetricNames, self.slicer.slicerName, self.jointRunNames, self.constraints, self.jointMetadata, displayDict) return fignum
[docs] def saveFig(self, fignum, outfileRoot, plotType, metricName, slicerName, runName, constraint, metadata, displayDict=None, trimWhitespace=True): fig = plt.figure(fignum) plotFile = outfileRoot + '_' + plotType + '.' + self.figformat if trimWhitespace: fig.savefig(os.path.join(self.outDir, plotFile), figformat=self.figformat, dpi=self.dpi, bbox_inches='tight') else: fig.savefig(os.path.join(self.outDir, plotFile), figformat=self.figformat, dpi=self.dpi) # Generate a png thumbnail. if self.thumbnail: thumbFile = 'thumb.' + outfileRoot + '_' + plotType + '.png' plt.savefig(os.path.join(self.outDir, thumbFile), dpi=72, bbox_inches='tight') # Save information about the file to resultsDb. if self.resultsDb: if displayDict is None: displayDict = {} metricId = self.resultsDb.updateMetric(metricName, slicerName, runName, constraint, metadata, None) self.resultsDb.updateDisplay(metricId=metricId, displayDict=displayDict, overwrite=False) self.resultsDb.updatePlot(metricId=metricId, plotType=plotType, plotFile=plotFile)