Source code for lsst.sims.maf.plots.moPlotters

from builtins import range
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm

from .plotHandler import BasePlotter

#mag_sun = -27.1 # apparent r band magnitude of the sun. this sets the band for the magnitude limit.
# see http://www.ucolick.org/~cnaw/sun.html for apparent magnitudes in other bands.
mag_sun = -26.74 # apparent V band magnitude of the Sun (our H mags translate to V band)
km_per_au = 1.496e8
m_per_km = 1000

[docs]class MetricVsH(BasePlotter): """ Plot metric values versus H. Marginalize over metric values in each H bin using 'npReduce'. """ def __init__(self): self.plotType = 'MetricVsH' self.objectPlotter = False self.defaultPlotDict = {'title': None, 'xlabel': 'H (mag)', 'ylabel': None, 'label': None, 'npReduce': None, 'nbins': None, 'albedo': None, 'Hmark': None, 'HmarkLinestyle': ':', 'figsize': None} self.minHrange=1.0 def __call__(self, metricValue, slicer, userPlotDict, fignum=None): if 'linestyle' not in userPlotDict: userPlotDict['linestyle'] = '-' plotDict = {} plotDict.update(self.defaultPlotDict) plotDict.update(userPlotDict) fig = plt.figure(fignum, figsize=plotDict['figsize']) Hvals = slicer.slicePoints['H'] reduceFunc = plotDict['npReduce'] if reduceFunc is None: reduceFunc = np.mean if Hvals.shape[0] == 1: # We have a simple set of values to plot against H. # This may be due to running a summary metric, such as completeness. mVals = metricValue[0].filled() elif len(Hvals) == slicer.shape[1]: # Using cloned H distribution. # Apply 'npReduce' method directly to metric values, and plot at matching H values. mVals = reduceFunc(metricValue.filled(), axis=0) else: # Probably each object has its own H value. hrange = Hvals.max() - Hvals.min() minH = Hvals.min() if hrange < self.minHrange: hrange = self.minHrange minH = Hvals.min() - hrange/2.0 nbins = plotDict['nbins'] if nbins is None: nbins = 30 stepsize = hrange / float(nbins) bins = np.arange(minH, minH + hrange + stepsize/2.0, stepsize) # In each bin of H, calculate the 'npReduce' value of the corresponding metricValues. inds = np.digitize(Hvals, bins) inds = inds-1 mVals = np.zeros(len(bins), float) for i in range(len(bins)): match = metricValue[inds == i] if len(match) == 0: mVals[i] = slicer.badval else: mVals[i] = reduceFunc(match.filled()) Hvals = bins plt.plot(Hvals, mVals, color=plotDict['color'], linestyle=plotDict['linestyle'], label=plotDict['label']) if 'xMin' in plotDict: plt.xlim(xmin = plotDict['xMin']) if 'xMax' in plotDict: plt.xlim(xmax = plotDict['xMax']) if 'yMin' in plotDict: plt.ylim(ymin = plotDict['yMin']) if 'yMax' in plotDict: plt.ylim(ymax = plotDict['yMax']) # Convert Hvals to diameter, using 'albedo' albedo = plotDict['albedo'] y = 1.0 if albedo is not None: ax = plt.axes() ax2 = ax.twiny() Hmin, Hmax = ax.get_xlim() dmax = 2.0 * np.sqrt(10**((mag_sun - Hmin - 2.5*np.log10(albedo))/2.5)) dmin = 2.0 * np.sqrt(10**((mag_sun - Hmax - 2.5*np.log10(albedo))/2.5)) dmax = dmax * km_per_au * m_per_km dmin = dmin * km_per_au * m_per_km ax2.set_xlim(dmax, dmin) ax2.set_xscale('log') ax2.set_xlabel('D (m)', labelpad=-10, horizontalalignment='right') ax2.grid(False) plt.sca(ax) y = 1.1 plt.grid(True) if plotDict['Hmark'] is not None: plt.axvline(x=plotDict['Hmark'], color='r', linestyle=plotDict['HmarkLinestyle'], alpha=0.3) plt.title(plotDict['title'], y=y) plt.xlabel(plotDict['xlabel']) plt.ylabel(plotDict['ylabel']) plt.tight_layout() return fig.number
[docs]class MetricVsOrbit(BasePlotter): """ Plot metric values (at a particular H value) vs. orbital parameters. Marginalize over metric values in each orbital bin using 'npReduce'. """ def __init__(self, xaxis='q', yaxis='e'): self.plotType = 'MetricVsOrbit_%s%s' %(xaxis, yaxis) self.objectPlotter = False self.defaultPlotDict = {'title': None, 'xlabel': xaxis, 'ylabel': yaxis, 'xaxis': xaxis, 'yaxis': yaxis, 'label': None, 'cmap': cm.viridis, 'npReduce': None, 'nxbins': None, 'nybins': None, 'levels': None, 'Hval': None, 'Hwidth': None, 'figsize': None} def __call__(self, metricValue, slicer, userPlotDict, fignum=None): plotDict = {} plotDict.update(self.defaultPlotDict) plotDict.update(userPlotDict) fig = plt.figure(fignum, figsize=plotDict['figsize']) xvals = slicer.slicePoints['orbits'][plotDict['xaxis']] yvals = slicer.slicePoints['orbits'][plotDict['yaxis']] # Set x/y bins. nxbins = plotDict['nxbins'] nybins = plotDict['nybins'] if nxbins is None: nxbins = 100 if nybins is None: nybins = 100 if 'xbins' in plotDict: xbins = plotDict['xbins'] else: xbinsize = (xvals.max() - xvals.min())/float(nxbins) xbins = np.arange(xvals.min(), xvals.max() + xbinsize/2.0, xbinsize) if 'ybins' in plotDict: ybins = plotDict['ybins'] else: ybinsize = (yvals.max() - yvals.min())/float(nybins) ybins = np.arange(yvals.min(), yvals.max() + ybinsize/2.0, ybinsize) nxbins = len(xbins) nybins = len(ybins) # Identify the relevant metricValues for the Hvalue we want to plot. Hvals = slicer.slicePoints['H'] Hwidth = plotDict['Hwidth'] if Hwidth is None: Hwidth = 1.0 if len(Hvals) == slicer.shape[1]: if plotDict['Hval'] is None: Hidx = len(Hvals) / 2 Hval = Hvals[Hidx] else: Hval = plotDict['Hval'] Hidx = np.where(np.abs(Hvals - Hval) == np.abs(Hvals - Hval).min())[0] Hidx = Hidx[0] else: if plotDict['Hval'] is None: Hval = np.median(Hvals) Hidx = np.where(np.abs(Hvals - Hval) <= Hwidth/2.0)[0] else: Hval = plotDict['Hvals'] Hidx = np.where(np.abs(Hvals - Hval) <= Hwidth/2.0)[0] if len(Hvals) == slicer.shape[1]: mVals = np.swapaxes(metricValue, 1, 0)[Hidx].filled() else: mVals = metricValue[Hidx].filled() # Calculate the npReduce'd metric values at each x/y bin. if 'colorMin' in plotDict: badval = plotDict['colorMin'] - 1 else: badval = slicer.badval binvals = np.zeros((nybins, nxbins), dtype='float') + badval xidxs = np.digitize(xvals, xbins) - 1 yidxs = np.digitize(yvals, ybins) - 1 reduceFunc = plotDict['npReduce'] if reduceFunc is None: reduceFunc = np.mean for iy in range(nybins): ymatch = np.where(yidxs == iy)[0] for ix in range(nxbins): xmatch = np.where(xidxs[ymatch] == ix)[0] matchVals = mVals[ymatch][xmatch] if len(matchVals) > 0: binvals[iy][ix] = reduceFunc(matchVals) xi, yi = np.meshgrid(xbins, ybins) if 'colorMin' in plotDict: vMin = plotDict['colorMin'] else: vMin = binvals.min() if 'colorMax' in plotDict: vMax = plotDict['colorMax'] else: vMax = binvals.max() nlevels = plotDict['levels'] if nlevels is None: nlevels = 200 levels = np.arange(vMin, vMax, (vMax-vMin)/float(nlevels)) plt.contourf(xi, yi, binvals, levels, extend='max', zorder=0, cmap=plotDict['cmap']) cbar = plt.colorbar() label = plotDict['label'] if label is None: label = '' cbar.set_label(label + ' @ H=%.1f' %(Hval)) plt.title(plotDict['title']) plt.xlabel(plotDict['xlabel']) plt.ylabel(plotDict['ylabel']) return fig.number
[docs]class MetricVsOrbitPoints(BasePlotter): """ Plot metric values (at a particular H value) as function of orbital parameters, using points for each metric value. """ def __init__(self, xaxis='q', yaxis='e'): self.plotType = 'MetricVsOrbit' self.objectPlotter = False self.defaultPlotDict = {'title': None, 'xlabel': xaxis, 'ylabel': yaxis, 'label': None, 'cmap': cm.viridis, 'xaxis': xaxis, 'yaxis': yaxis, 'Hval': None, 'Hwidth': None, 'foregroundPoints': True, 'backgroundPoints': False} def __call__(self, metricValue, slicer, userPlotDict, fignum=None): fig = plt.figure(fignum) plotDict = {} plotDict.update(self.defaultPlotDict) plotDict.update(userPlotDict) xvals = slicer.slicePoints['orbits'][plotDict['xaxis']] yvals = slicer.slicePoints['orbits'][plotDict['yaxis']] # Identify the relevant metricValues for the Hvalue we want to plot. Hvals = slicer.slicePoints['H'] Hwidth = plotDict['Hwidth'] if Hwidth is None: Hwidth = 1.0 if plotDict['Hval'] is None: if len(Hvals) == slicer.shape[1]: Hidx = len(Hvals) / 2 Hval = Hvals[Hidx] else: Hval = np.median(Hvals) Hidx = np.where(np.abs(Hvals - Hval) <= Hwidth/2.0)[0] if len(Hvals) == slicer.shape[1]: mVals = np.swapaxes(metricValue, 1, 0)[Hidx] else: mVals = metricValue[Hidx] if 'colorMin' in plotDict: vMin = plotDict['colorMin'] else: vMin = mVals.min() if 'colorMax' in plotDict: vMax = plotDict['colorMax'] else: vMax = mVals.max() if plotDict['backgroundPoints']: # This isn't quite right for the condition .. but will do for now. condition = np.where(mVals == 0) plt.plot(xvals[condition], yvals[condition], 'r.', markersize=4, alpha=0.5, zorder=3) if plotDict['foregroundPoints']: plt.scatter(xvals, yvals, c=mVals, vmin=vMin, vmax=vMax, cmap=plotDict['cmap'], s=15, alpha=0.8, zorder=0) cb = plt.colorbar() plt.title(plotDict['title']) plt.xlabel(plotDict['xlabel']) plt.ylabel(plotDict['ylabel']) return fig.number