Source code for lsst.sims.maf.metrics.phaseGapMetric

import numpy as np
from .baseMetric import BaseMetric

__all__ = ['PhaseGapMetric']

[docs]class PhaseGapMetric(BaseMetric): """ Measure the maximum gap in phase coverage for observations of periodic variables. """ def __init__(self, col='observationStartMJD', nPeriods=5, periodMin=3., periodMax=35., nVisitsMin=3, metricName='Phase Gap', **kwargs): """ Construct an instance of a PhaseGapMetric class :param col: Name of the column to use for the observation times, commonly 'observationStartMJD' :param nPeriods: Number of periods to test :param periodMin: Minimum period to test (days) :param periodMax: Maximimum period to test (days) :param nVistisMin: minimum number of visits necessary before looking for the phase gap """ self.periodMin = periodMin self.periodMax = periodMax self.nPeriods = nPeriods self.nVisitsMin = nVisitsMin super(PhaseGapMetric, self).__init__(col, metricName=metricName, units='Fraction, 0-1', **kwargs)
[docs] def run(self, dataSlice, slicePoint=None): """ Run the PhaseGapMetric. :param dataSlice: Data for this slice. :param slicePoint: Metadata for the slice (Optional as not used here). :return: a dictionary of the periods used here and the corresponding largest gaps. """ if len(dataSlice) < self.nVisitsMin: return self.badval # Create 'nPeriods' evenly spaced periods within range of min to max. step = (self.periodMax-self.periodMin)/self.nPeriods if step == 0: periods = np.array([self.periodMin]) else: periods = np.arange(self.nPeriods) periods = periods/np.max(periods)*(self.periodMax-self.periodMin)+self.periodMin maxGap = np.zeros(self.nPeriods, float) for i, period in enumerate(periods): # For each period, calculate the phases. phases = (dataSlice[self.colname] % period)/period phases = np.sort(phases) # Find the largest gap in coverage. gaps = np.diff(phases) start_to_end = np.array([1.0 - phases[-1] + phases[0]], float) gaps = np.concatenate([gaps, start_to_end]) maxGap[i] = np.max(gaps) return {'periods':periods, 'maxGaps':maxGap}
[docs] def reduceMeanGap(self, metricVal): """ At each slicepoint, return the mean gap value. """ return np.mean(metricVal['maxGaps'])
[docs] def reduceMedianGap(self, metricVal): """ At each slicepoint, return the median gap value. """ return np.median(metricVal['maxGaps'])
[docs] def reduceWorstPeriod(self, metricVal): """ At each slicepoint, return the period with the largest phase gap. """ worstP = metricVal['periods'][np.where(metricVal['maxGaps'] == metricVal['maxGaps'].max())] return worstP
[docs] def reduceLargestGap(self, metricVal): """ At each slicepoint, return the largest phase gap value. """ return np.max(metricVal['maxGaps'])