Source code for lsst.sims.maf.metrics.pairMetric

import numpy as np
from .baseMetric import BaseMetric

__all__ = ['PairMetric']


[docs]class PairMetric(BaseMetric): """ Count the number of pairs that could be used for Solar System object detection """ def __init__(self, mjdCol='expMJD', metricName='Pairs', match_min=20., match_max=40., binsize=5., **kwargs): """ Parameters ---------- match_min : float (20.) Minutes after first observation to count something as a match match_max : float (40.) Minutes after first observation to count something as a match binsize : float (5.) Binsize to use (minutes) """ self.mjdCol = mjdCol self.binsize = binsize/60./24. self.match_min = match_min/60./24. self.match_max = match_max/60./24. super(PairMetric, self).__init__(col=mjdCol, metricName=metricName, units='N Pairs', **kwargs)
[docs] def run(self, dataSlice, slicePoint=None): bins = np.arange(dataSlice[self.mjdCol].min(), dataSlice[self.mjdCol].max()+self.binsize, self.binsize) hist, bin_edges = np.histogram(dataSlice[self.mjdCol], bins=bins) nbin_min = np.round(self.match_min / self.binsize) nbin_max = np.round(self.match_max / self.binsize) bins_to_check = np.arange(nbin_min, nbin_max+1, 1) bins_w_obs = np.where(hist > 0)[0] # now, for each bin with an observation, need to check if there is a bin # far enough ahead that is also populated. result = 0 for binadd in bins_to_check: result += np.size(np.intersect1d(bins_w_obs, bins_w_obs+binadd)) if result == 0: result = self.badval return result