from __future__ import print_function
import inspect
import lsst.sims.maf.metrics as metrics
import lsst.sims.maf.stackers as stackers
__all__ = ['combineMetadata', 'filterList', 'radecCols', 'standardSummary', 'extendedSummary',
'standardMetrics', 'extendedMetrics', 'standardAngleMetrics',
'summaryCompletenessAtTime','summaryCompletenessOverH']
[docs]def filterList(all=True, extraSql=None, extraMetadata=None):
"""Return a list of filters, plot colors and orders.
Parameters
----------
all : boolean, opt
Include 'all' in the list of filters and as part of the colors/orders dictionaries.
Default True.
extraSql : str, opt
Additional sql constraint to add to sqlconstraints returned per filter.
Default None.
extraMetadata : str, opt
Substitute metadata to add to metadata strings composed per band.
Default None.
Returns
-------
list, dict, dict
List of filter names, dictionary of colors (for plots), dictionary of orders (for display)
"""
if all:
filterlist = ('all', 'u', 'g', 'r', 'i', 'z', 'y')
else:
filterlist = ('u', 'g', 'r', 'i', 'z', 'y')
colors = {'u': 'cyan', 'g': 'g', 'r': 'orange', 'i': 'r', 'z': 'm', 'y': 'b'}
orders = {'u': 1, 'g': 2, 'r': 3, 'i': 4, 'z': 5, 'y': 6}
if all:
colors['all'] = 'k'
orders['all'] = 0
sqls = {}
metadata = {}
if extraMetadata is None:
if extraSql is None or len(extraSql) == 0:
md = ''
else:
md = '%s ' % extraSql
else:
md = '%s ' % extraMetadata
for f in filterlist:
if f == 'all':
sqls[f] = ''
metadata[f] = md + 'all bands'
else:
sqls[f] = 'filter = "%s"' % f
metadata[f] = md + '%s band' % f
if extraSql is not None and len(extraSql) > 0:
for s in sqls:
if s == 'all':
sqls[s] = extraSql
else:
sqls[s] = '(%s) and (%s)' % (extraSql, sqls[s])
return filterlist, colors, orders, sqls, metadata
[docs]def radecCols(ditherStacker, colmap, ditherkwargs=None):
degrees = colmap['raDecDeg']
if ditherStacker is None:
raCol = colmap['ra']
decCol = colmap['dec']
stacker = None
ditherMeta = None
else:
if isinstance(ditherStacker, stackers.BaseDitherStacker):
stacker = ditherStacker
else:
s = stackers.BaseStacker().registry[ditherStacker]
args = [f for f in inspect.getfullargspec(s).args if f.endswith('Col')]
# Set up default dither kwargs.
kwargs = {}
for a in args:
colmapCol = a.replace('Col', '')
if colmapCol in colmap:
kwargs[a] = colmap[colmapCol]
# Update with passed values, if any.
if ditherkwargs is not None:
kwargs.update(ditherkwargs)
stacker = s(degrees=degrees, **kwargs)
raCol = stacker.colsAdded[0]
decCol = stacker.colsAdded[1]
# Send back some metadata information.
ditherMeta = stacker.__class__.__name__.replace('Stacker', '')
if ditherkwargs is not None:
for k, v in ditherkwargs.items():
ditherMeta += ' ' + '%s:%s' % (k, v)
return raCol, decCol, degrees, stacker, ditherMeta
[docs]def standardSummary():
"""A set of standard summary metrics, to calculate Mean, RMS, Median, #, Max/Min, and # 3-sigma outliers.
"""
standardSummary = [metrics.MeanMetric(),
metrics.RmsMetric(),
metrics.MedianMetric(),
metrics.CountMetric(),
metrics.MaxMetric(),
metrics.MinMetric(),
metrics.NoutliersNsigmaMetric(metricName='N(+3Sigma)', nSigma=3),
metrics.NoutliersNsigmaMetric(metricName='N(-3Sigma)', nSigma=-3.)]
return standardSummary
[docs]def extendedSummary():
"""An extended set of summary metrics, to calculate all that is in the standard summary stats,
plus 25/75 percentiles."""
extendedStats = standardSummary()
extendedStats += [metrics.PercentileMetric(metricName='25th%ile', percentile=25),
metrics.PercentileMetric(metricName='75th%ile', percentile=75)]
return extendedStats
[docs]def standardMetrics(colname, replace_colname=None):
"""A set of standard simple metrics for some quantity. Typically would be applied with unislicer.
Parameters
----------
colname : str
The column name to apply the metrics to.
replace_colname: str or None, opt
Value to replace colname with in the metricName.
i.e. if replace_colname='' then metric name is Mean, instead of Mean Airmass, or
if replace_colname='seeingGeom', then metric name is Mean seeingGeom instead of Mean seeingFwhmGeom.
Default is None, which does not alter the metric name.
Returns
-------
List of configured metrics.
"""
standardMetrics = [metrics.MeanMetric(colname),
metrics.MedianMetric(colname),
metrics.MinMetric(colname),
metrics.MaxMetric(colname)]
if replace_colname is not None:
for m in standardMetrics:
if len(replace_colname) > 0:
m.name = m.name.replace('%s' % colname, '%s' % replace_colname)
else:
m.name = m.name.rstrip(' %s' % colname)
return standardMetrics
[docs]def extendedMetrics(colname, replace_colname=None):
"""An extended set of simple metrics for some quantity. Typically applied with unislicer.
Parameters
----------
colname : str
The column name to apply the metrics to.
replace_colname: str or None, opt
Value to replace colname with in the metricName.
i.e. if replace_colname='' then metric name is Mean, instead of Mean Airmass, or
if replace_colname='seeingGeom', then metric name is Mean seeingGeom instead of Mean seeingFwhmGeom.
Default is None, which does not alter the metric name.
Returns
-------
List of configured metrics.
"""
extendedMetrics = standardMetrics(colname, replace_colname=None)
extendedMetrics += [metrics.RmsMetric(colname),
metrics.NoutliersNsigmaMetric(colname, metricName='N(+3Sigma) ' + colname, nSigma=3),
metrics.NoutliersNsigmaMetric(colname, metricName='N(-3Sigma) ' + colname, nSigma=-3),
metrics.PercentileMetric(colname, percentile=25),
metrics.PercentileMetric(colname, percentile=75),
metrics.CountMetric(colname)]
if replace_colname is not None:
for m in extendedMetrics:
if len(replace_colname) > 0:
m.name = m.name.replace('%s' % colname, '%s' % replace_colname)
else:
m.name = m.name.rstrip(' %s' % colname)
return extendedMetrics
[docs]def standardAngleMetrics(colname, replace_colname=None):
"""A set of standard simple metrics for some quantity which is a wrap-around angle.
Parameters
----------
colname : str
The column name to apply the metrics to.
replace_colname: str or None, opt
Value to replace colname with in the metricName.
i.e. if replace_colname='' then metric name is Mean, instead of Mean Airmass, or
if replace_colname='seeingGeom', then metric name is Mean seeingGeom instead of Mean seeingFwhmGeom.
Default is None, which does not alter the metric name.
Returns
-------
List of configured metrics.
"""
standardAngleMetrics = [metrics.MeanAngleMetric(colname),
metrics.RmsAngleMetric(colname),
metrics.FullRangeAngleMetric(colname),
metrics.MinMetric(colname),
metrics.MaxMetric(colname)]
if replace_colname is not None:
for m in standardAngleMetrics:
if len(replace_colname) > 0:
m.name = m.name.replace('%s' % colname, '%s' % replace_colname)
else:
m.name = m.name.rstrip(' %s' % colname)
return standardAngleMetrics
[docs]def summaryCompletenessAtTime(times, Hval, Hindex=0.33):
"""A simple list of summary metrics to be applied to the Discovery_Time or PreviouslyKnown metrics.
(can be used with any moving object metric which returns the time of discovery).
Parameters
----------
times : np.ndarray or list
The times at which to evaluate the completeness @ Hval.
Hval : float
The H value at which to evaluate the completeness (cumulative and differential).
Hindex : float, opt
The index of the power law to integrate H over (for cumulative completeness).
Default is 0.33.
Returns
-------
List of moving object MoCompletenessAtTime metrics (cumulative and differential)
"""
summaryMetrics = [metrics.MoCompletenessAtTimeMetric(times=times, Hval=Hval, Hindex=Hindex,
cumulative=False),
metrics.MoCompletenessAtTimeMetric(times=times, Hval=Hval, Hindex=Hindex,
cumulative=True)]
return summaryMetrics
[docs]def summaryCompletenessOverH(requiredChances=1, Hindex=0.33):
"""A simple list of summary metrics to be applied to the Discovery_N_Chances metric.
Parameters
----------
requiredChances : int, opt
Number of discovery opportunities required to consider an object 'discovered'.
Hindex : float, opt
The index of the power law to integrate H over (for cumulative completeness).
Default is 0.33.
Returns
-------
List of moving object MoCompleteness metrics (cumulative and differential)
"""
summaryMetrics = [metrics.MoCompletenessMetric(requiredChances=requiredChances, cumulative=False, Hindex=0.33),
metrics.MoCompletenessMetric(requiredChances=requiredChances, cumulative=True, Hindex=0.33)]
return summaryMetrics